A Ncs System over the Grossman-larson Hopf Algebra of Labeled Rooted Trees
نویسنده
چکیده
In this paper, we construct explicitly a NCS system ([Z4]) Ω T ∈ (H GL) ×5 over the Grossman-Larson Hopf algebra H GL ([GL] and [F]) of rooted trees labeled by elements of a nonempty W ⊆ N of positive integers. By the universal property of the NCS system (NSym,Π) formed by the generating functions of certain NCSF’s ([GKLLRT]), we obtain a graded Hopf algebra homomorphism TW : NSym → H GL such that T (Π) = Ω T . Consequently, we get a specialization of NCSF’s by W -labeled tree and a graded Hopf algebra homomorphism T W : H W CK → QSym from the Connes-Kreimer Hopf algebra H CK of W -labeled rooted forests to the Hopf algebra QSym of Quasi-symmetric functions ([Ge], [MR] and [St2]). A connection of the coefficients of the third generating function of the NCS system Ω T with the order polynomials of rooted trees is also given and proved.
منابع مشابه
A noncommutative symmetric system over the Grossman-Larson Hopf algebra of labeled rooted trees
In this paper, we construct explicitly a noncommutative symmetric (NCS) system over the Grossman-Larson Hopf algebra of labeled rooted trees. By the universal property of the NCS system formed by the generating functions of certain noncommutative symmetric functions, we obtain a specialization of noncommutative symmetric functions by labeled rooted trees. Taking the graded duals, we also get a ...
متن کاملNcs Systerms over Differential Operator Algebras and the Grossman-larson Hopf Algebras of Labeled Rooted Trees
Let K be any unital commutative Q-algebra and W any non-empty subset of N. Let z = (z1, . . . , zn) be commutative or noncommutative free variables and t a formal central parameter. Let D〈〈z〉〉 (α ≥ 1) be the unital algebra generated by the differential operators ofK〈〈z〉〉 which increase the degree in z by at least α− 1 and A [α] t 〈〈z〉〉 the group of automorphisms Ft(z) = z−Ht(z) of K[[t]]〈〈z〉〉 w...
متن کاملCocommutative Hopf Algebras of Permutations and Trees
Consider the coradical filtration of the Hopf algebras of planar binary trees of Loday and Ronco and of permutations of Malvenuto and Reutenauer. We show that the associated graded Hopf algebras are dual to the cocommutative Hopf algebras introduced in the late 1980’s by Grossman and Larson. These Hopf algebras are constructed from ordered trees and heap-ordered trees, respectively. We also sho...
متن کاملCombinatorics of Rooted Trees and Hopf Algebras
We begin by considering the graded vector space with a basis consisting of rooted trees, with grading given by the count of non-root vertices. We define two linear operators on this vector space, the growth and pruning operators, which respectively raise and lower grading; their commutator is the operator that multiplies a rooted tree by its number of vertices, and each operator naturally assoc...
متن کاملNoncommutative Symmetric Systems over Associative Algebras
This paper is the first of a sequence papers ([Z4]–[Z7]) on the NCS (noncommutative symmetric) systems over differential operator algebras in commutative or noncommutative variables ([Z4]); the NCS systems over the Grossman-Larson Hopf algebras ([GL], [F]) of labeled rooted trees ([Z6]); as well as their connections and applications to the inversion problem ([BCW], [E4]) and specializations of ...
متن کامل